

Content

- Introduction
 - Context
 - Farm level vs. IO LCA's → why should we use micro level data
- Methodology
 - FADN & strategies to scale up farms results
 - How to assess weighting strategies?
- The case: LCA FADN dairy farms
 - Goal & scope
 - Three weighting strategies
 - Results
- Wrapping up

Introduction

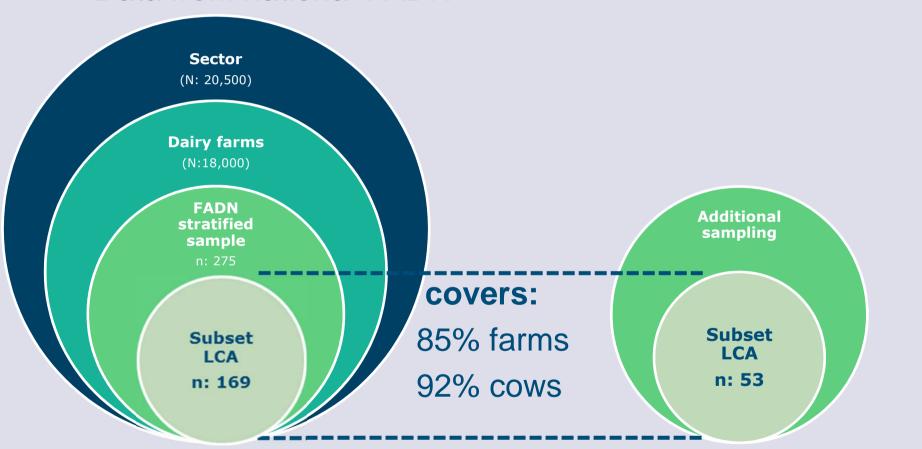
Some facts about Dutch dairy production

Variable	Value
Farms with cows (sector)	20,500
Specialized farms	18,000
- cows	76
- milk production per cow	8.000
- cultivated area	47
- milk production per ha	13.000

Source: agricultural census / FADN 2008

High input of feed (~2 tonnes of concentrate per cow)

Introduction


- Farm level LCA's vs. IO LCA's (Why use micro level data?)
 - Better insight in the range of performance
 - Decisions on farm level are key in many environmental problems
 - What is the effect on other aspects of sustainability?

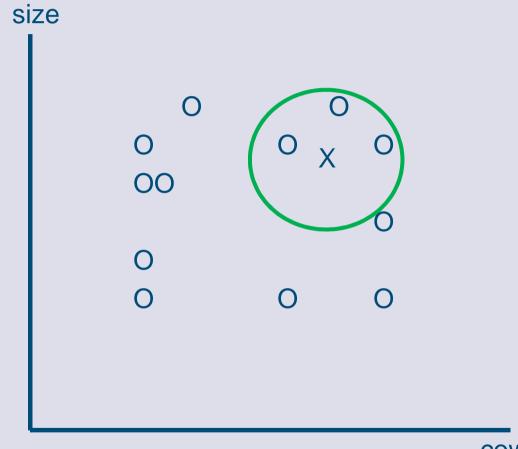
....how to translate farm results into a sector score?

Methodology (FADN)

Data from national FADN

Methodology (scaling up)

- The 'FADN way'
 - Three strata (equal weights per stratum)
 - Weighting factor based on economic size
 - Problem: we excluded some farms, and we have farms outside the FADN sample
 - Problem: environmental performances are related to other factors than economic size only
- The 'simple way'
 - Equal weight per farms (WF=1)
 - All farms are used
 - Problem: doesn't fit the sampling strategy (heterogeneity)
- The 'alternative way: statistical matching'

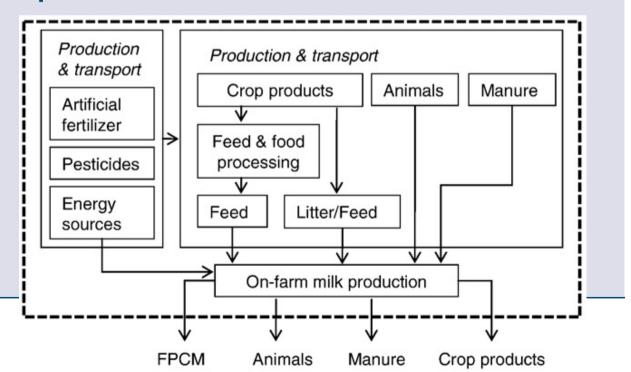


Methodology

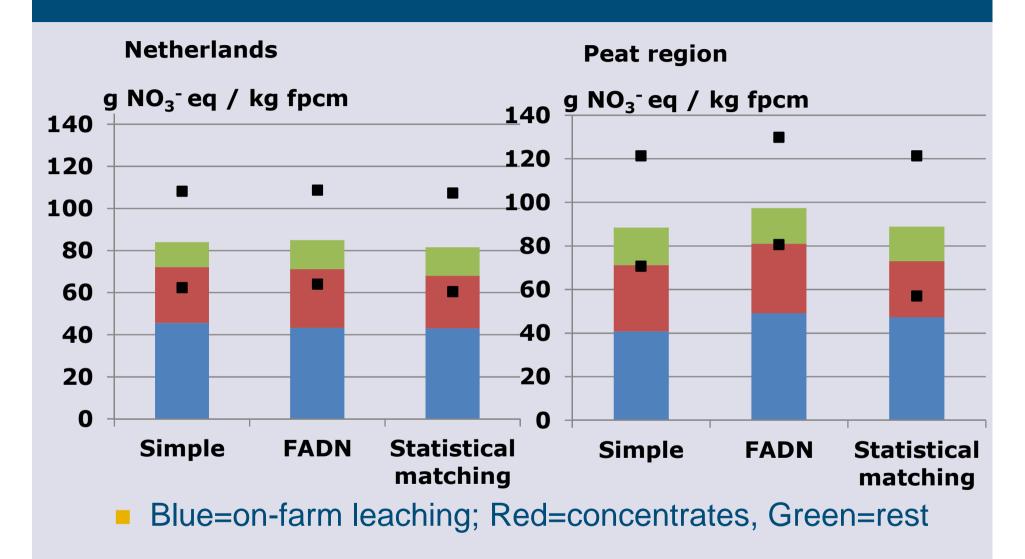
- Statistical matching
 - Choose the best variables to match
 - Usages all available farms
 - Problem: doesn't fit the sampling strategy (heterogeneity)
- Variables used for matching
 - Economic size
 - Soil type region
 - % of maize silage
 - Animals (LU) per hectare

Methodology (Statistical matching)

X = population farm


O = sample farm

cows per ha


The case: LCA FADN dairy farms

- Goal and scope
 - Cradle to farm gate assessment
 - FU: 1 kg of FPCM
 - Impact categories: Land use, climate change, Non-renewable energy use, eutrophication and acidification

Preliminary results – Eutrophication

How to assess?

- Sensitivity of the weighting factor
- Compare weighted variables with population average
- Leave- one-out analysis

Sensitivity of the weighting factor?

Parameter	Simple NL	FADN NL	S.I	Match		mple eat	FA Pe	DN eat	S.I Pe	Match at
N	17,737	17,7	' 37	17,737		3,588		3,588	V	3,588
n	222	2 \ 2	222	222	X	36	X	36	Λ	36
N-wf	222	11,8	346	17,737		36		1,734		3,588
n-wf	222	2 1	59	222		36		22		36
wf-mean	1.0	7	4.5	79.9		1.0		70.2		99.7
wf-max	1.0	4	0.6	5.3	V	1.0	V	40.6		8.3
wf-min	1.0	9	6.4	357.2		1.0	\bigwedge	96.4	X	247.3
wf-max/wf-mean	1.0		1.3	4.5	/	1.0		1.4	/\	2.5

Comparison with population average

Parameter	Simple NL	FADN NL		S.M NL	atch	Sim Pea	-	FAC Pea		S.M Pea	atch
Economic size	118	3 /	101	\ /	99	\ /	139		122		100
% of maize silage	109	Э	114		103		129		116		116
No. LU per ha	90		91		89	/\	103	/ \	100		96

- 100 = equal
- 105 = 5% overestimated
- 95 = 5% underestimated

Leave-one-out analysis eutrophication

- Statistical matching: sample vs. sample*
- Compare computed value with the estimate based on statistical matching

Parameter	NL	Peat region
On-farm	103	113
Off-farm	96	92
Total	100	103

Wrapping up

- How to scale-up your results does matter!!
- Statistical matching is a promising method to scale up results in to a sector score.

...however,

- Which variable to choose for matching?
- What about the non-specialized farms?
- Number of sample farms could be a problem?
- Next step: compare with IO LCA

