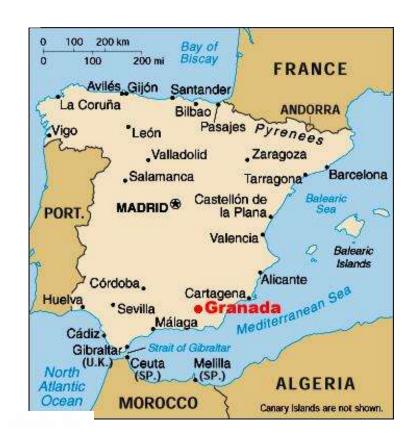
Goat production in Spain

David R. Yáñez-Ruiz Animal Nutrition, CSIC, Granada, Spain



CONSEJO SUPERIOR DE INVESTIGACIONES CIENTÍFICAS

Small Ruminants Research group

Alternative feed resources

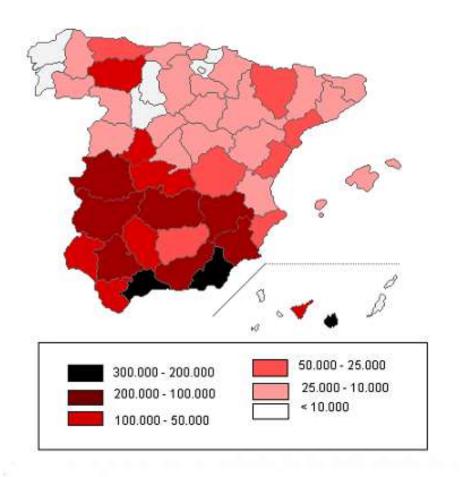
GHG Emissions

Rumen microbial ecosystem

Goat production in Spain

- Introduction, background
- Main local dairy breeds
- Sector organization
- On farm Production data
- Production costs
- Feeding by-products
- Conclusions

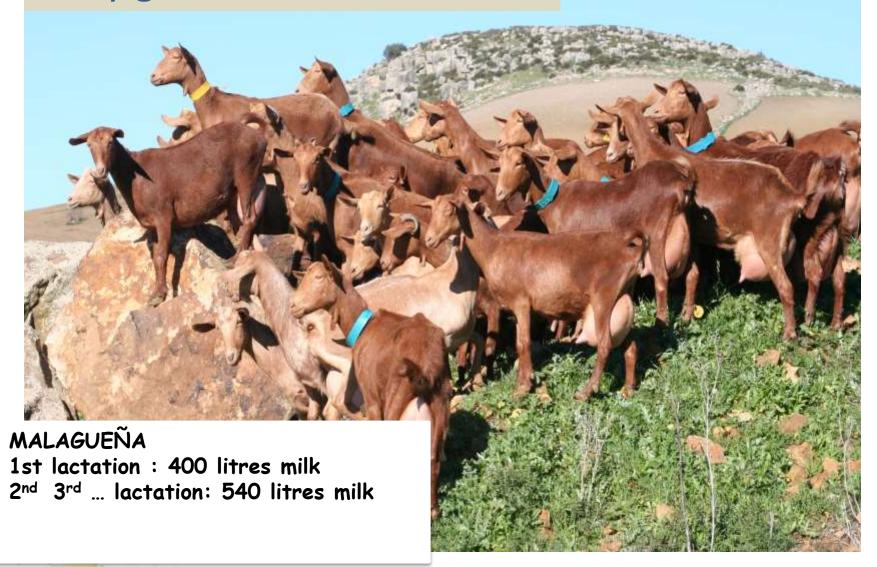
Goat production in Spain: background


- Tradition
 - goat kids 20 kg after spring grazing
 - Cheese manufactaring during season
- a) 1980s: kid meat shifted to 1 month old
- c) Changes in milk processing health
 standards shift to milk selling
- c) 1990s: feedstuffs prices fell and milk value increased: intensification
- Only 9 % of goat milk is processed on farm / cooperative

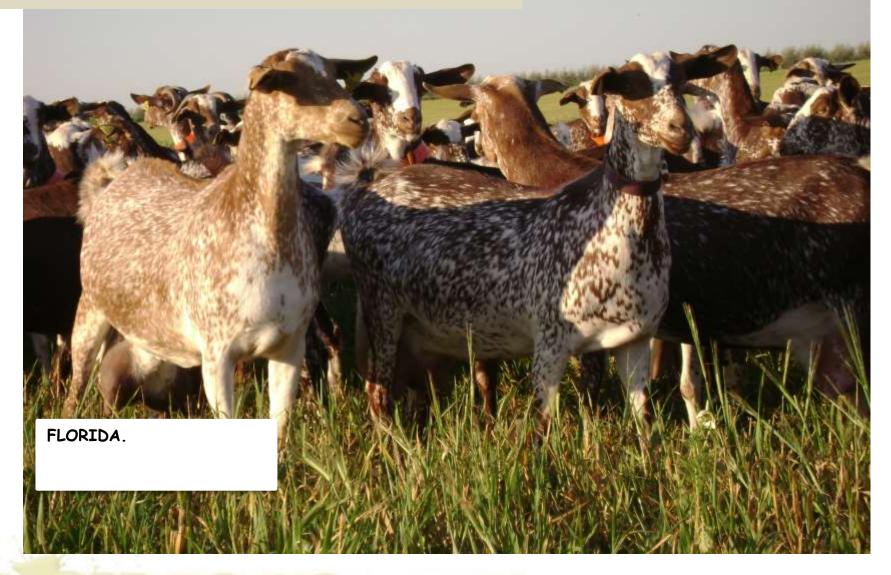
Geographic distribution

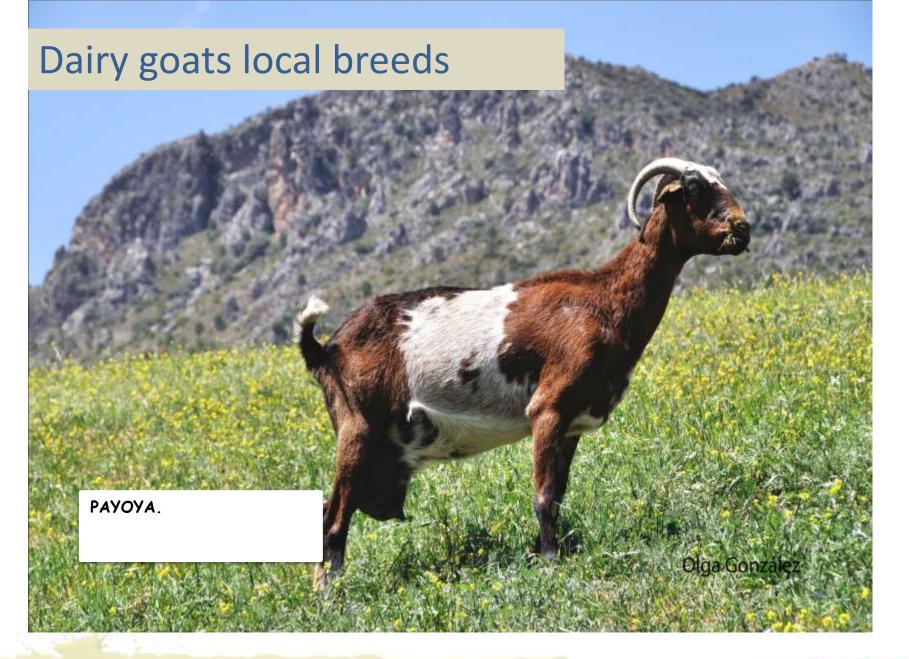
• Intensive: 20 to 50 %

Semi-extensive& extensive: 80 to 50%



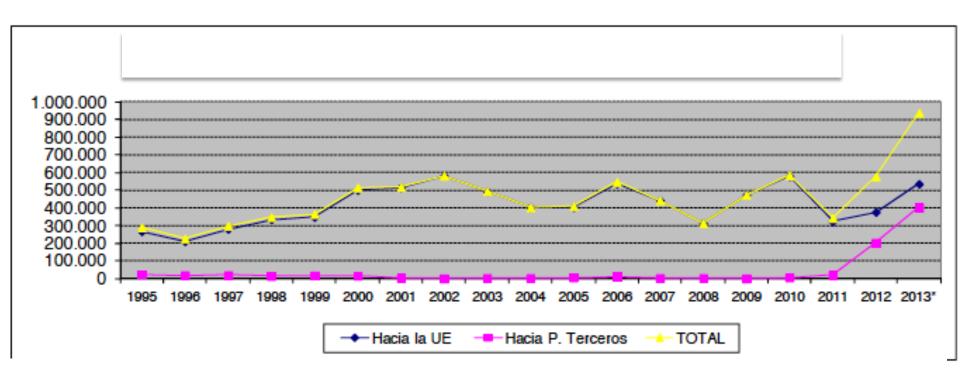
Dairy goats local breeds




Dairy goats local breeds

Dairy goats local breeds

FEAGAS WEBSITE



Exporting genetic resources, live animals / year

Los principales destinos de exportación de animales vivos ovinos y caprinos son Francia (37%), Portugal, (47%), Libia (20%), Italia (13%) y Líbano (3%).

CABRANDALUCIA: FEDERATION OF GOATS BREEDS ASSOCIATIONS IN ANDALUSIA (from 2005)

CABRANDALUCIA: FEDERATION OF GOATS BREEDS ASSOCIATIONS IN ANDALUSIA (from 2005)

- 94.407 goats
- 11% of total Andalucía
- 282 farms
- 100% of animals in breeding programs
- Six breeds

AREAS OF WORK

GOAT REFERENCE CENTER

LACTATION COTROL PROGRAMME

1. Lactation control programme

Monthly individual collection of production data and milk samples

2. Goat reference center

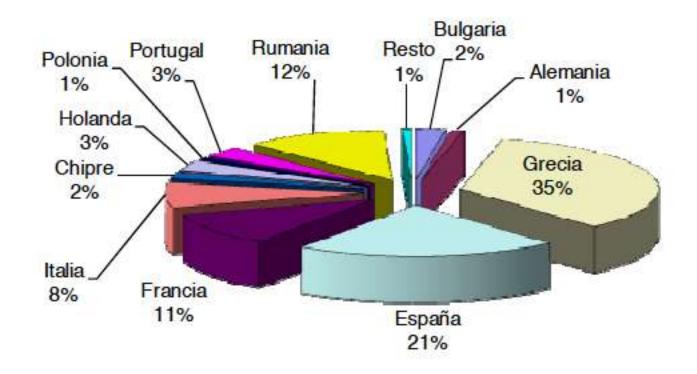
OBJECTIVE: organize the sector to make it more competitive

ACTIVITIES:

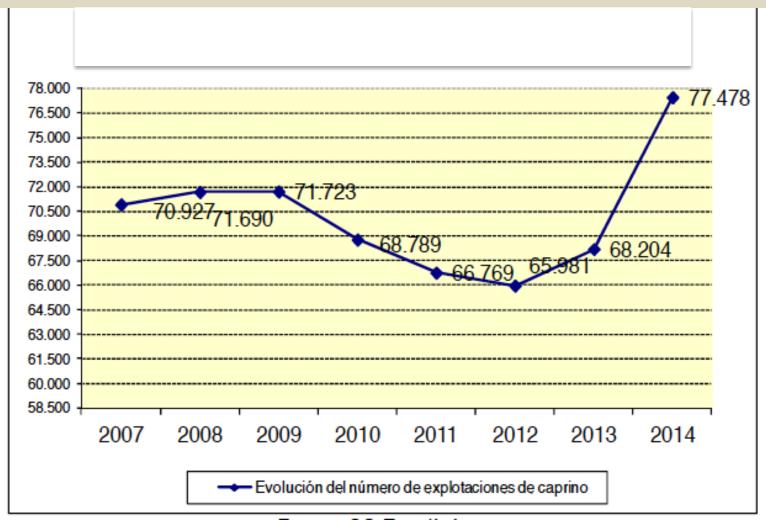
RESEARCH

Centro de Referencia Caprino

MARKETING



Distribution by countries EU, goats population



Goats farm numbers in Spain

EU goat milk production

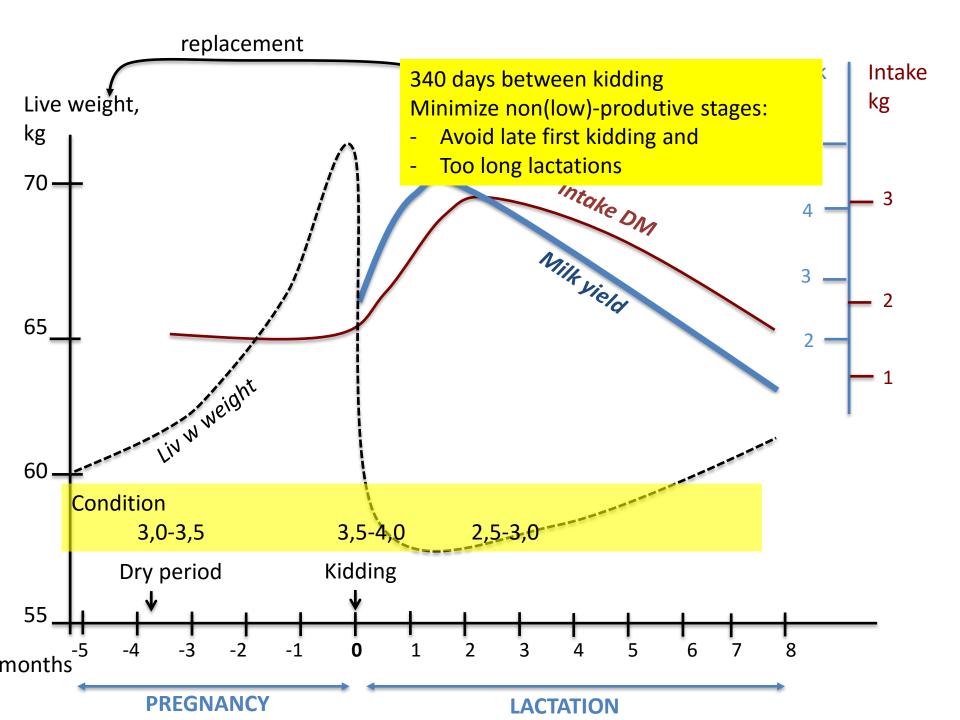
Table 5 Goat milk production in the main EU producting countries, 1999-2009

Country	ry 1999		20	2009/1999	
	Metric Tons	%	Metric Tons	%	%
Bulgaria	200,000	10.57	64,090	3.28	32.04
Czech Rep.	15,154	0.80	8,652	0.44	57.09
Estonia	549	0.02	477	0.02	86.88
France	495,800	26.21	623,460	31.92	125.74
Greece	526,142	27.82	505,000	25.86	95.98
Hungary	4,165	0.22	3,200	0.16	76.83
Italy	114,400	6.04	46,000	2.35	40.20
Latvia	1,726	0.09	3,392	0.17	196.52
Lithuania	12,320	0.65	4,063	0.20	32.97
Malta	277	0.01	1,296	0.06	467.87
Portugal	34,393	1.81	26,877	1.37	78.14
Romania	126,360	6.68	183,346	9.38	145.09
Slovakia	13,200	0.69	8,200	0.41	62.12
Slovenia	2,160	0.11	1,539	0.08	71.25
Spain	404,100	21.37	473,000	24.30	117.05
Total EU	1,890,923	100.00	1,952,592	100.00	103.26

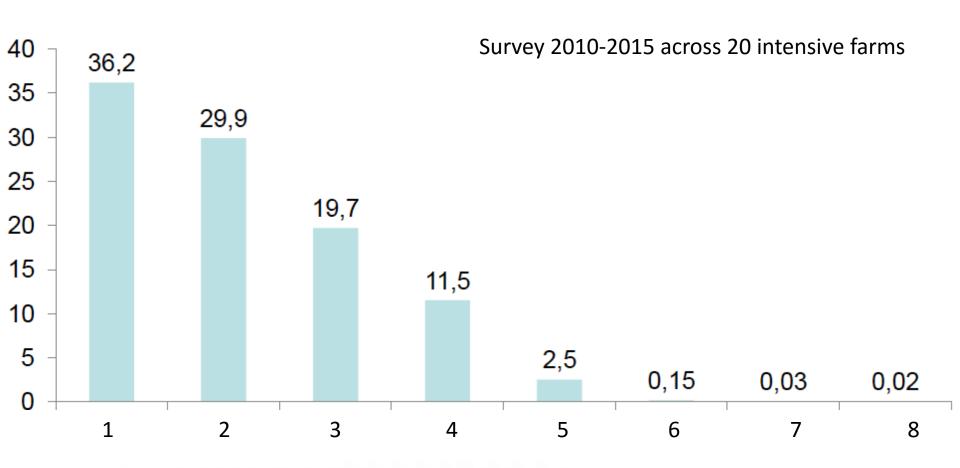
Source: FAOStat, 2010, [12]. Own calculations

Distribution by continents

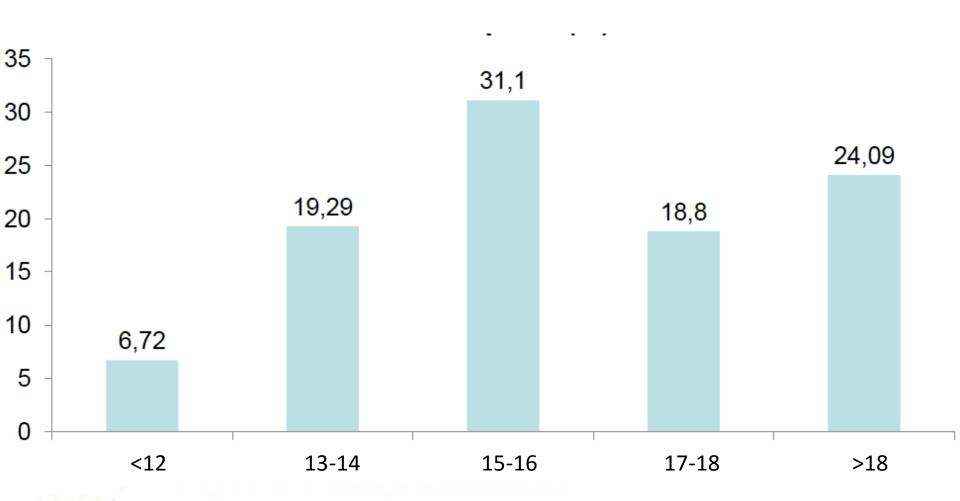
Table 4 Distribution of goat milk production by continent, 1999-2009


Year	MU	Asia	Africa	Americas	Europe	Oceania	Total world
1999	1,000 MT	7,011	2,615	555	2,476	0.027	12,657
	%	55.39	20.66	4.38	19.56	0.01	100.00
2009	1,000 MT	8,909	3,206	544	2,469	0.040	15,128
	%	58.89	21.19	3.59	16.32	0.01	100.00
2009/1999	%	127.07	122.60	98.01	99.71	148.14	119.52

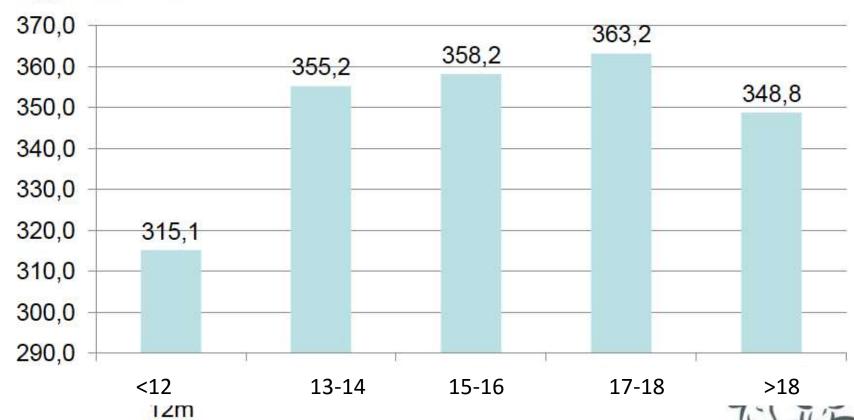
Source: FAOStat, 2010, Own calculations.



Number of lactation / goat (% goats)

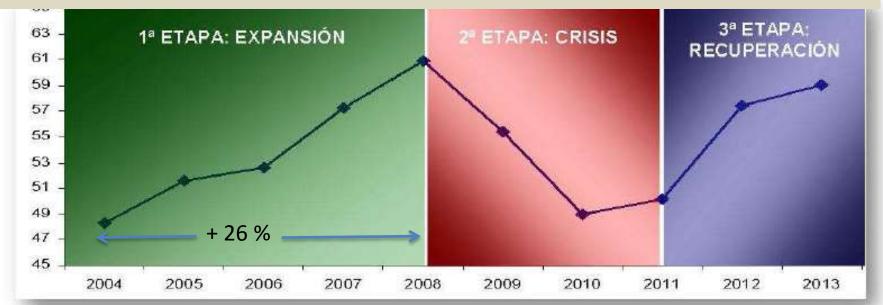


Age 1st kidding (% goats)



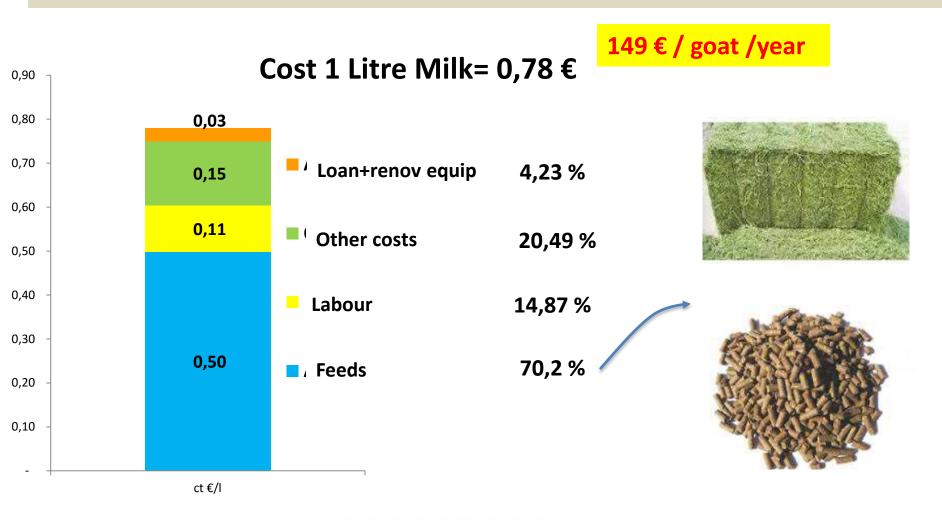
Milk production according to 1st kidding

kg/lactación



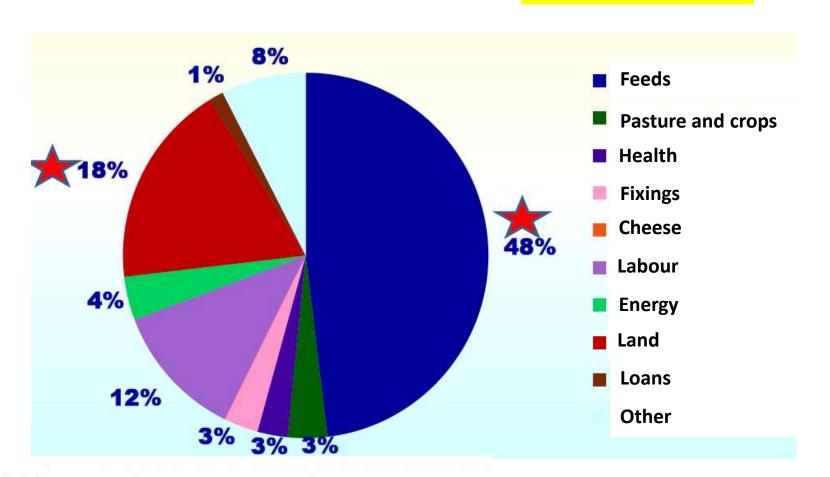
Goat milk prices last 10 years

- Increased demand in EU, hardly any competition from outside EU
- Increased demand from consumers
 - Increased <u>production costs</u>
 - Increased flocks size and intensification


- Excessed production
- International competitors
- Decreased demand
- Financia crisis
- Higher presure from industry
- Increased production costs

- New markets (China)
- Traditional markets recovered
- Reduced production
- Still high production costs

Farm costs for 1 litre milk INTENSIVE (10 farms)



Farm costs for 1 l milk (SEMI)EXTENSIVE (12 farms)

114 € / goat /year

Agro-industrial by-products

Olive pulp


Olive leaves

Tomato waste

Olive pulp

Olive leaves

Tomato waste

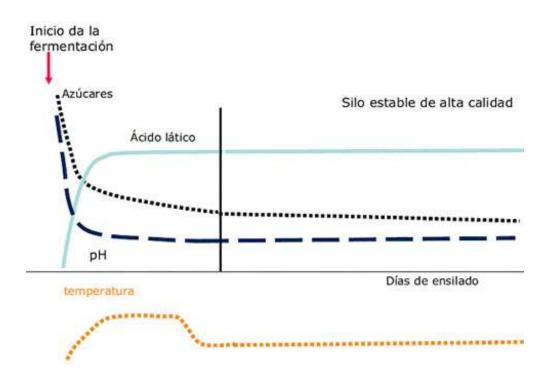
СР	7,44	9,88	15,3
NDF	63,2	41,8	19,1
ADF	43,0	28,2	13,9
Fat	0-6	4-8	4,8

Water 60 42,1 94

How to store and provide these feeds?

-Fresh?

-BLOCKS



-SILAGE

ENSILING

40-60 % H2O SUGARS

OLIVE SILAGE: 50 % olive leaves+ 25 % olive pulp+ 25 % barley

TOMATO SILAGE: 80 % tomato + 15 % straw+ 5 % barley+ formic acid

*Video ensilado

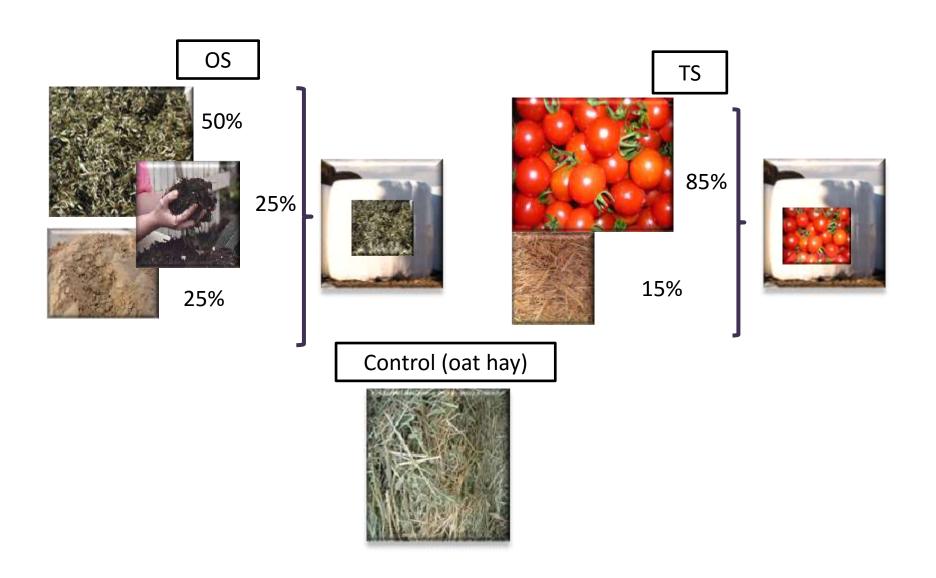
On-farm trials in Spain: by-products in dairy goats

Farm 1 (September-November 2013)

- Olive and tomato silages
- 3 experimental groupsControl : olive silage : tomato silage
- 2 months monitoring
- Feed intake, milk yield and composition and environmental assessment

Farms 2 and 3 (September-December 2013)

- Orange (farm2) and cauliflower (farm3) by-products
- 260 (1) and 600 (2) lactating goats
- 4 months monitoring
- Feed intake, milk yield and composition, farm inputs and outputs



Farm 1: Silages made with olive oil and tomato by products

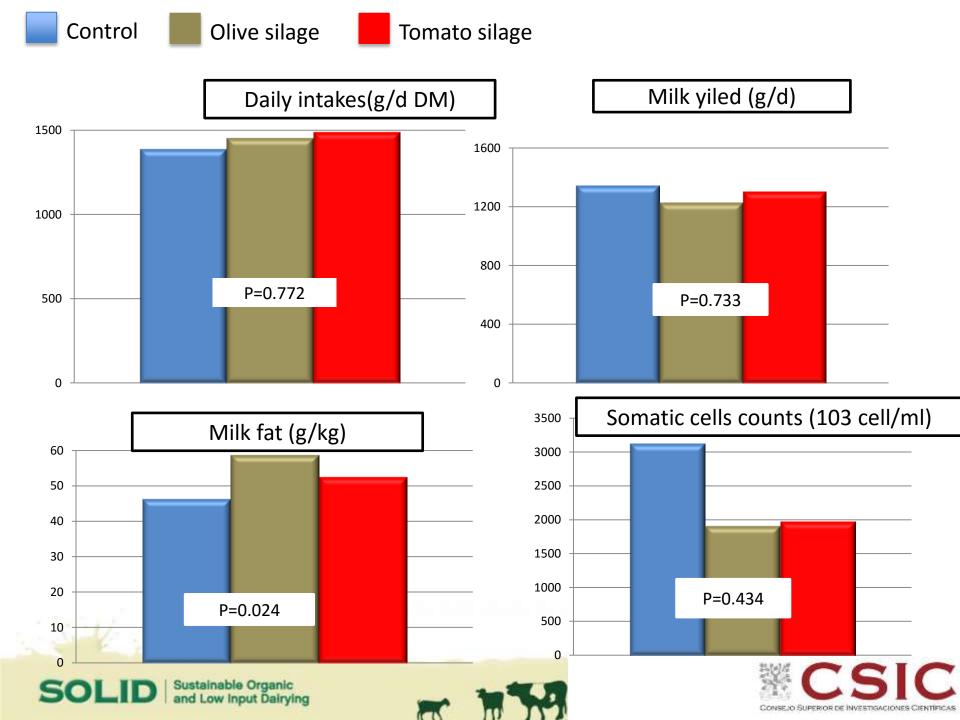
Farm 1: Silages made with olive oil and tomato by products

	Olive silage	Tomato silage	Oat Hay
DM (%)	71,4	41,6	92,6
OM (%)	83,7	89,7	95,8
Ee (%)	5,95	3,16	4,8
NDF(%)	39,0	41,6	34,4
CP (%)	8,8	11,9	10,1

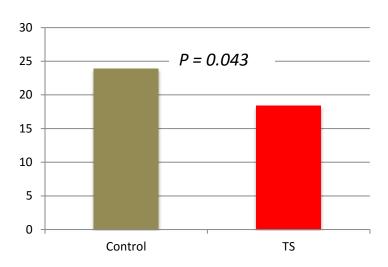
60 dairy goats in mid lactation (n=20) (groups of 5)

TMR (80%) + 20% Oat hay Olive Silage Tomato Silage

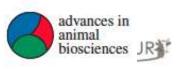
9 % feeding costs


28 days adaptation

- Milk yield (2 d) and composition
- Intakes (5 d by groups)
- Rumen digesta



Farm 1: Silages made with olive oil and tomato by products


CH4, I / kg DM intake

Modelling the impact on greenhouse gas emissions of using underutilized feed resources in dairy goat systems

G. Pardo^{1†}, D. Yañez-Ruiz², I. Martin-Garcia², A. Arco², R. Moral³ and A. del Prado¹

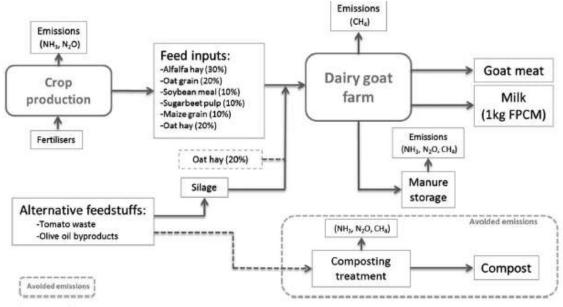
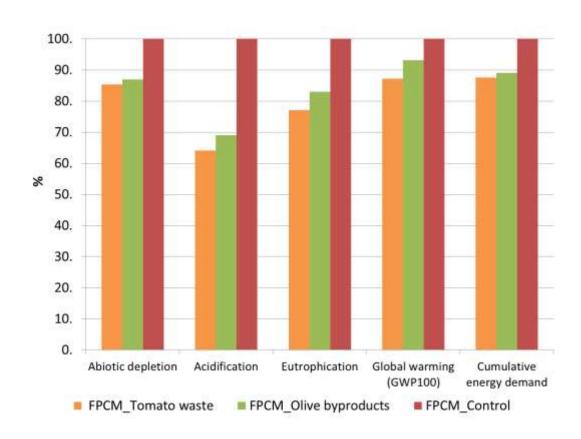


Figure 1 Modelling framework for dairy goat production system.



Results

Impact assessment:

Farm 1: Silages made with olive oil and tomato by products

Pesticides detecded in silages and diets GCMS/MS & LCMS/MS

*10 µg/kg, *EUPT-CF7 2014*". <LD: below detection level ; N.D.: non detected

ie with olive o	i and to	omato b	y proat	ıcts		
Pesticides (µg/kg)	OE	Diet OE	TS	Diet TS	Control	
2-Fenil-fenol ¹	13,5*	15,0*	17,0*	20,3*	16,4*	
Acetamiprid ²	11,5*	1,70	9,30	N.D.	0,40	
Azinfos-etil ²	N.D.	N.D.	14,1*	N.D.	N.D.	
Azoxistrobina ²	44,0*	<ld< td=""><td>24,5*</td><td><ld< td=""><td>N.D.</td></ld<></td></ld<>	24,5*	<ld< td=""><td>N.D.</td></ld<>	N.D.	
Carbofurano ²	N.D.	N.D.	15,0*	N.D.	N.D.	
Carboxin ²	4,50	N.D.	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>	
Clorpirifos ¹	11,4	111*	7,90	109*	126*	
Clorpirifos metil ¹	N.D.	13,1*	N.D.	11,3*	N.D.	
Clotianidina ²	N.D.	N.D.	4,20	N.D.	N.D.	
Cipermetrina ¹	N.D.	131*	N.D.	95,7*	90,5*	
Ciprodinilo ¹	N.D.	N.D.	92,4*	19,3*	N.D.	
Difenoconazol ²	<ld< td=""><td><ld< td=""><td>25,2*</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td>25,2*</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	25,2*	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>	
Diflufenican ¹	11,5*	7,00	N.D.	N.D.	N.D.	
Epoxiconazol ²	<ld< td=""><td><ld< td=""><td>30,0*</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td>30,0*</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	30,0*	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>	
Espiroxamina ²	<ld< td=""><td><ld< td=""><td>12,2*</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td>12,2*</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	12,2*	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>	
Etofenprox ¹	N.D.	39,2*	41,5*	28,5*	24,2*	
Fenhexamida ²	<ld< td=""><td><ld< td=""><td>16,5*</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td>16,5*</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	16,5*	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>	
Fenitrotión ²	N.D.	N.D.	3,60	N.D.	N.D.	
Fenpropimorf ²	N.D.	N.D.	3,00	<ld< td=""><td>N.D.</td></ld<>	N.D.	
Fention-sulfona ²	6,60	N.D.	2,70	N.D.	N.D.	
Fention-sulfoxido ²	N.D.	N.D.	12,5*	N.D.	N.D.	
Fludioxonil ¹	N.D.	N.D.	130*	38,1*	N.D.	
Fluquinconazol ²	N.D.	N.D.	18,0*	N.D.	N.D.	
Flutriafol ²	<ld< td=""><td><ld< td=""><td>39,0*</td><td>2,10</td><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td>39,0*</td><td>2,10</td><td><ld< td=""></ld<></td></ld<>	39,0*	2,10	<ld< td=""></ld<>	
Fosfamidón ²	N.D.	N.D.	12,3*	N.D.	N.D.	
Imazalil ²	N.D.	N.D.	12,0*	N.D.	N.D.	
Iprodiona ²	<ld< td=""><td><ld< td=""><td>18,6*</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td>18,6*</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	18,6*	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>	
Isoproturón ²	N.D.	N.D.	11,7*	<ld< td=""><td>N.D.</td></ld<>	N.D.	
Linurón ²	N.D.	N.D.	12,3*	N.D.	N.D.	
Malaoxón ²	2,50	2,90	6,50	N.D.	N.D.	
Malatión ²	<ld< td=""><td><ld< td=""><td>14,4*</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td>14,4*</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	14,4*	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>	
Metconazol ²	<ld< td=""><td><ld< td=""><td>32,1*</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td>32,1*</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	32,1*	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>	
Metacrifos ²	21,2*	N.D.	4,50	N.D.	N.D.	
Oxifluorfen ¹	359*	93,3*	18,3*	N.D.	N.D.	
Paclobutrazol ²	<ld< td=""><td>N.D.</td><td>38,7*</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	N.D.	38,7*	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>	
Pencicurón ²	<ld< td=""><td><ld< td=""><td>12,0*</td><td>N.D.</td><td>N.D.</td></ld<></td></ld<>	<ld< td=""><td>12,0*</td><td>N.D.</td><td>N.D.</td></ld<>	12,0*	N.D.	N.D.	
Pirimifos metilo ¹	N.D.	11,5*	N.D.	9,60	10,7*	
Piraclostrobina ²	N.D.	N.D.	<ld< td=""><td>N.D.</td><td>N.D.</td></ld<>	N.D.	N.D.	
Pirimetanil ¹	N.D.	N.D.	27,4*	12,6*	10,2*	
Quinoxifen ²	<ld< td=""><td><ld< td=""><td>14,1*</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td>14,1*</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	14,1*	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>	
Tebuconazol ²	14,5*	239*	68,1*	289*	161*	

Farm 2: Citric by-products in dairy goats

Farm 2: Citric by-products in dairy goats

Yearly farm calendar of activities and feeds supply

	J	F	M	Α	M	J	J	Α	S	0	N	D
Activities												
Tree prunning												
Leaves collection												
Kidding												
Dry period												
Supply												
Orange and lemons												
Mandarines												
Fresh leaves												
Dry leaves												
Concentrate												
Oat hay												

Farm 2: Citric by-products in dairy goats

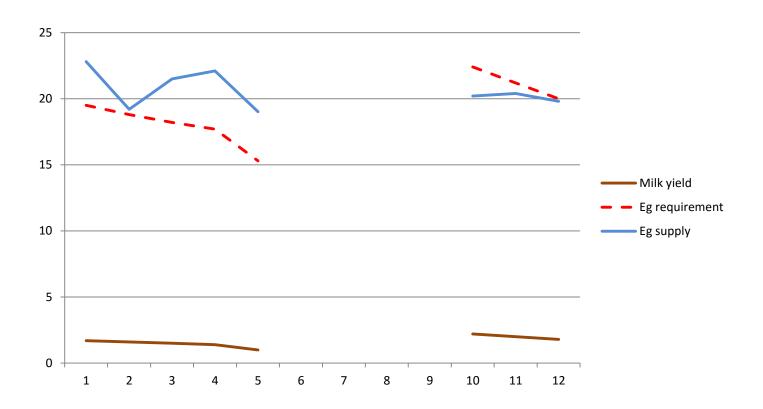
	DM (g/kg)	ОМ	СР	NDF	ME (MJ/kg DM)
Oranges	415	960	85	127	6.45
Mandarines	154	960	62	154	6.29
Lemons	110	958	73	97	6.15
Fresh leaves	370	872	172	177	5.45
Dry leaves	916	812	125	285	4.48
Concentrate	855	951	176	212	9.98
Oat hay	908	924	53	330	6.25
Barley straw	939	970	17	433	5.22

Declaración de Control

Asociación Nacional de Criadores de Caprino de Raza Murciano Granadina

Caserlo San Pedro sin - 18220 Albolote (Granada) - Tho/Fax: 958467558 - E-mail: caprigran@terra.es

		RESUI	WEN CON	IPARA	TIVO DE	L	CONTROL	
	CONTRO	L REALIZAD	OO EL 26/01/	2013	11 1		MEDIA ASOCIACIÓN	2,00
Nº ANIMALES	Kg. CONTROL	Kg. TANGUE	Kg. x ANIMAL	C88 CON.	C88 TAN.	Ļ	MEDIA AUTONÓMICA	1,94
186	349,6	335,9	1,88	829	1025	î	MEDIA PROVINCIAL	2,04
	C	ONTROL A	NTERIOR	2 0		ê	MEDIA ASOCIACIÓN	1336
Nº ANIMALES	Kg. CONTROL	Kg. TANQUE	Kg. x ANIMAL	C88 CON.	C88 TAN.	è	MEDIA AUTONÓMICA	1161
193	298,8	299,3	1,55	596	881	ì	MEDIA PROVINCIAL	1088


OR	Animal	Po	F. Parto	Mi.	100	10EL	Inoldencias	Ke	Kor	% Gr	SE PT	E8U	ACS:	CHS	Agum	Pr. 306 Vitaliola
75	17500x	- 1	00/00/0000		100		-	2,23	1,1	6,0	3,3	9,3	0	206	dA predict	
58	GFG05038 17278	1	28/12/2012	6	1	29	6	1,02	0,5	5,0	3,4	8,4	. 0	86	14,7	2827,6
62	GFG07002 17295	1	26/11/2012	7	2	51		2,64	1,3	5,7	3,7	9,4	73	180	101,3	2027,4
78	GFG07035 17608	1	29/11/2012	7	2	58		2,23	1,1	5,4	3,6	10,0	1237	1145	71,2	1791,4
81	GFG09001 17390	. 1	27/11/2012	4	2	60		2,23	1,1	5,4	4,2	9,5	0	952	34,6	732,8
77	GFG09008 17283	1	29/11/2012	4	2	58		2,64	1,3	5,2	3,5	8,7	. 0	1173	51,3	851,9
11	GFG09013 17293	1	01/12/2012	4	2	56		1,62	0,8	5,3	3,2	8,5	. 0	624	25,2	773,7
70	GFG09018 17319	1	29/11/2012	4	2	58		2,44	1,2	4,9	3,2	8,2	. 0	76	37,8	761,2

Farm 2: Citric by-products in dairy goats

New by-product: water melon plant

Conclusions

- Well organised sector but very much dependent on
 - Acquiring external feeds
 - Milk price

 Use of by-products locally may alleviate the high dependence on external feeds input

ευχαριστώ

Thank you!

david.yanez@eez.csic.es

