EAAP Copenhagen August 26 Session Organic Livestock Farming, challenges and future perspectives

WHAT MAKES ORGANIC LIVESTOCK PRODUCTION SUSTAINABLE

Frank Oudshoorn, Evelien de Olde Aarhus University Anke Stubsgaard, Knowledge center for Agriculture

AGENDA

- 1. To know what makes organic livestock production sustainable we need a way to assess sustainability.
- 2. General problems with assessment
- 3. Development of a methodology including a tool.

Oudshoorn, assessing sustainable production

TO BE ABLE TO ASSESS WHAT IS SUSTAINABLE, THE FOLLOWING QUESTIONS HAVE TO BE ADDRESSED

- A. We need to know and agree on what we understand by sustainability
- B. We need to know and agree on the goal of the assessment, who is the user?
- C. We need to know and agree on what to measure and how precise (this is dependent of the objective_B)
- D. We need to know and agree on how to validate or score (dependent on B and C)

We need to identify and be in constant dialogue with the stakeholders.

Oudshoorn, assessing sustainable production

WHAT IS SUSTAINABLE (LIVESTOCK) PRODUCTION

SAFA, sustainability assessment of food and agricultural systems. FAO took initiative to evaluate and suggest a framework and describe this as a protocol. Confusion on wordings (dimensions (issues), themes (subthemes).

Dimensions (issues):

Environment	Integrity
Economy	Resilience
	Social well being
Governance	Good

Oudshoorn, assessing sustainable production

HOWEVER... CONFUSION,

Many use sustainable, only mean one dimension or two combined

Environmental sustainability; climate impact, pollution, nature, landscape, biodiversity

Economic sustainability; profit, robustness to calamity, low cost,

Social sustainability; equity, fairness, animal welfare, human health, ethics, risks

Oudshoorn, assessing sustainable production

WHO ARE THE USERS, WHAT IS THE GOAL, ?

Policy makers

Consumers

Scientists

Industry

Sector

Farmers

Environmental laws, regional planning,

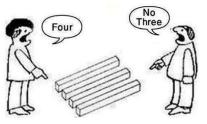
Quality, branding

Research based estimations

Benchmarking, sales

Advisory, development, lobby

Production, comparison


Oudshoorn, assessing sustainable production

WHAT DOES THIS MEAN FOR MEASUREMENTS

Which indicators do we value highest (animal welfare, economy, social well being) Weighting of parameters included in calculations (soil organic matter in climate impact) Precision of measuring parameters (exact on-farm measurements, estimation, modelling) Time span (real-time, average, one year, 3 years)

Dialogue

It is really confusing!!!

Oudshoorn, assessing sustainable production

STATE OF THE ART

General demand for sustainable products by society,

Industry is starting up. focusing on certain disciplines like climate, animal welfare, using commercial scientific service centers. Paying for life cycle assessments, quality programs etc. Slowly addressing the total spectrum of sustainability

Government is asking (university, applied research) for impartial detailed documentation, until now only disciplinary. E.g. climate impact or eutrophication. Trade-offs is left for politicians

Farmers would like to know how to implement these criteria. How do they score?

Oudshoorn, assessing sustainable production

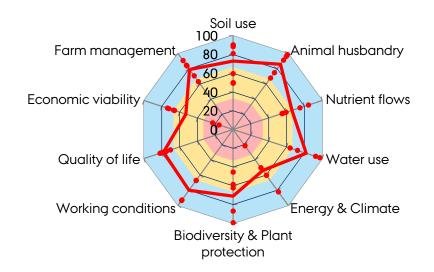
IN RESPONSE, RESEARCH, ADVISORY AND INDUSTRY DECIDE TO DEVELOP A METHODOLOGY, STARTING WITH ORGANIC FARMING

Prerequisites

Including all dimensions Overview and focus on details Documented Understandable, no black boxes International

Adaptable (not top down) Reliable Online

Oudshoorn, assessing sustainable production


RESPONSE INDUCING SUSTAINABILITY EVALUATION (RISE)

Farm tool, based on farm interviews and farm data has been annotated by FAO as one of the best tools available. Tested and under continuous development 3 Dimensions, 10 indicators , parameters, calculations, Although governance is not explicitly mentioned , it is integrated Web based, interface, benchmarking is possible. International, scientific, cooperation with CH, D, DK Adaptable, uses regional data Light, basic, detailed

Oudshoorn, assessing sustainable production

STRUCTURE

Each Indicator is quantified by measuring parameters.

FX_Nutrient flows Nitrogen (N) balance Phosphorous (P) balance N and P self sufficiency Ammonia volatilization Disposal of wastes

Oudshoorn, assessing sustainable production

NITROGEN BALANCE

Text	Unit	Value	Value	Value	Value	Value
Nitrogen balance	Points	77				
Nitrogen balance	%		126.3			
N-supply (fertilization)	kg			30,217.(
Detailed results of each animal category can be found under the node "Animal husbandry".						
N-supply: Animal husbandry	kg				11,636.8	
N-supply: Animal husbandry (before storage and application losses)	kg					23,273
Region typical N-loss in barns and storage	%					20.0
Region typical N-loss in the distribution of organic manure	%					30.0
N-supply: Mineral fertilizers	kg				0.0	
N-supply: Imported organic fertilizers	kg				2,520.0	
N-supply: Fixation of legumes	kg				12,964.6	
N-supply from the air	kg				3,095.8	
N-demand crop production and export of organic fertilizers	kg			23,916.(
N-demand: Crop production	kg				23,916.4	
N-demand: Export of organic fertilizers	kg				0.0	
Detailed results of each crop can be found under the node "Crop production".						

Oudshoorn, assessing sustainable production

RESULTS

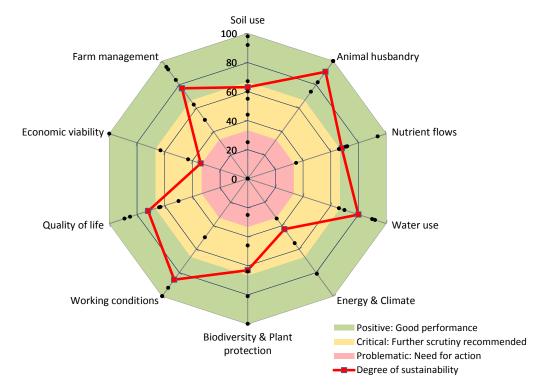
Results are not yet presentable because there are some disturbing mistakes.

4 organic sectors are being analysed; dairy, pig, poultry, arable. 50 reports. Group of educated advisors is doing the data gathering on-farm, in active dialogue.

Industry (dairy, pork, egg, vegetables) would like to use results for customer (retail/consumer) information and for product quality check

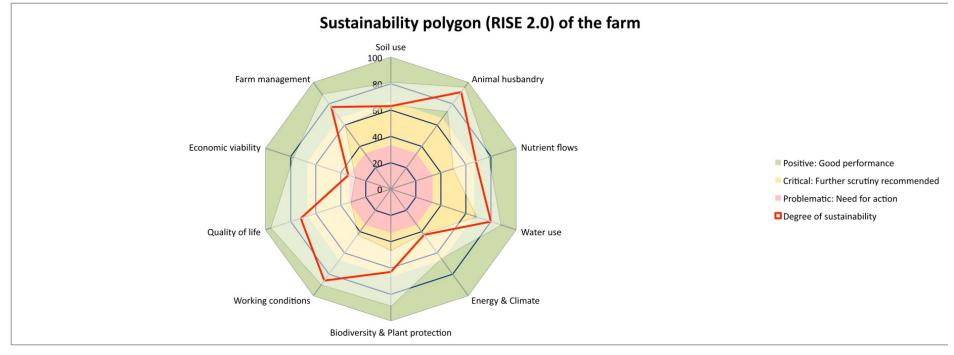
Research would like to find correct ways of weighting, calculating and data gathering.

Projects presently involved:


KØB, Kompetence Udvikling Økologis Bæredygtighed

Autograssmilk (EU, FP 7), Økologi i Spor (GUDP)

Oudshoorn, assessing sustainable production


ORGANIC DAIRY FARM, EXAMPLE

AARHUS UNIVERSITY DEPARTMENT OF ENGINEERING

Oudshoorn, assessing sustainable production

BENCHMARKING

Oudshoorn, assessing sustainable production

SOME CHALLENGES, PARTLY BECAUSE OF INTERNATIONAL REFERENCE VALUES

Animal health, mutilations with seduction count high

Economy, debts, % of household expenses earned by the farm

Energy, biofuel not available in DK

How to value biodiversity (even though it is nationally adjusted)

Oudshoorn, assessing sustainable production

WHAT MAKES ORGANIC LIVESTOCK SUSTAINABLE?

Active use of RISE, would provide

Documentation of sustainability indicators of all dimensions Evaluation of strengths and weaknesses

Guidelines for production development and follow up.

Integrated communication of results to farmer and industry (retailer/consumer)

Oudshoorn, assessing sustainable production

Thank you for your interest

