Soil N balances and soil N dynamics under Irish dairy production systems

M. Necpalova ^{1,2} P. Phelan ^{1,2}, I.A. Casey ² and J. Humphreys ¹

¹ AGRIC, Teagasc, Moorepark, Ireland ² Waterford Institute of Technology, Ireland

Department of Agriculture, Fisheries and Food An Roinn Talmhaíochta, Iascaigh agus Bia

Background

N leaching

Objectives

Objectives:

- To quantify N losses through calculation of soil surface balances
- To evaluate the effect on soil soluble organic and inorganic content down to 0.9 m depth
- To determine the management and climatic factors affecting soil soluble N dynamics in a clay loam soil profile

Site characteristics

- <u>Solohead</u> is a dairy research farm
- Local climate: humid temperate oceanic (1018 mm, 9.8°C)
- Growing season length: 305 days
- <u>Annual grass production rate</u>: 11.5 t DM ha⁻¹
- Soils: Gleys (90%) and Grey Brown Podzolics (10%)
 - clay loam texture and low permeability
 - topsoil SOM, SOC and TN content was 6.48%, 4.48% and 0.48%
 - contain perched watertable (0 to 2.2 m bgl)

=> much of the farm remains seasonally wet, waterlogged or flooded due to impeded drainage

<image/>		Treatments: Dairy production systems					
		Calving date	Stocking rate LU ha ⁻¹	Fertilizer N kg ha ⁻¹	Grazing season		
	Early spring calving with fertilizer (ES-100N)	17 th Feb	2.1	100	Feb – Nov		
	Early spring calving without fertilizer (ES-0N)	17 th Feb	1.6	0	Feb - Nov		
	Late spring calving without fertilizer (LS-0N)	17 th Apr	1.7 until 1 st Sept, then reduced to1.2	0	Apr – Jan		

Methods

Soil surface balances calculation

• Entries were chosen in correspondence with methodology of the OECD

- Surplus = ammonia volatilisation, denitrification, leaching losses + N accumulation into soil profile
- Balances were calculated for each paddock of the system for each year

Quantities of :

- Synthetic fertilizer and slurry recorded
- N in animal excreta- calculated as a difference between cows N intake and N output, accounting for a live weight change (Powell, 2006)
 - proportion excreted in each paddock estimated according a N° of grazing days
- Atmospheric deposition measured using a rainfall collector in situ
- White clover BNF in stolons, roots and stubble estimated using a mechanistic model as described by Humphreys *et al.* (2008)
- Herbage production pre-grazing and pre-harvesting herbage DM yields were measured by cutting four random strips at 5 cm
 - a subsample was freeze-dried, milled and analysed for N using LECO
 - harvested and grazed herbage due to losses was estimated to be 90%

Soil core sampling

- Soil BD measured using the cylinder core method
- Soil cores for chemical analyses- taken 8 times during the study period

- 15 cores per paddock taken using a hydraulic auger to a depth of 90 cm (0 to 30, 30-60, 60-90 cm)

- bulked, crumbled and mixed to get a representative sample
- subjected to extraction within an hour
- Extracts were obtained by shaking of soil with 2M KCl for three hours at a solution ratio of 2:1

Soil core analyses

Extracts were left to stand, filtered

 analysed for Ammonium N, total oxidised N, and total soluble N

- Soluble organic N = Total soluble N Soluble inorganic N
- Results expressed on DM basis using gravimetric soil moisture content or
 an area basis using BD data for each soil depth

Statistical analyses

- Performed using SAS software
- The experimental unit of balances was a single paddock
- N fluxes and N surplus two way analysis of variance (Proc Mixed)
- fixed effects: system, year and system x year interaction
- Soil N results three way analysis of variance (Proc Mixed)
- fixed effects: system, sampling depth and their interaction
- repeated measure: sampling date
- Indicators affecting soil N using simple and multiple stepwise linear regression analyses (Proc Reg)

Results

Soil surface balances

N flow (kg ha ⁻¹)	ES- 100N	ES-0N	LS-0N	System	Year	SxY
N input (kg ha ⁻¹):						
N in synthetic fertilizer	100.0	0.0	0.0			
BNF	66.3 ^b	112.3 ^a	133.8 ^a	<0.05	NS	<0.05
N in excreta during grazing	119.2 ^a	95.2 ^{ab}	82.2 ^b	<0.05	NS	NS
N in slurry	109.1	109.0	103.0	NS	NS	NS
Atmospheric deposition	6.5	6.5	6.5			
total N input	401.2	322.8	325.2	<0.05	NS	NS
N output (kg ha ⁻¹)						
N in grazed grass	219.0 ^a	177.5 ^{ab}	147.2 ^b	<0.05	NS	NS
N in harvested grass	48.2	47.0	88.5	NS	NS	NS
N uptake by herbage	267.2	224.5	235.7	NS	NS	NS
N removed in herbage	240.5	202.0	212.2	NS	NS	NS
N surplus (kg ha ⁻¹)	160.7	120.8	113.0	NS	NS	NS
N use efficiency (%)	62.9	65.2	71.6	NS	NS	NS

Factors affecting soils soluble organic N

Factors affecting soil soluble inorganic N

Dependent variable (y)	Factor (x, z)	Relationship	Model R ²	P value
Total oxidised N	gravimetric soil moisture (x)	y = -0.01x + 1.77	0.115	<0.05
	soil temperature (x)	y = 0.12x - 0.30	0.468	<0.0001
	rainfall (x)	y = -0.18x + 1.62	0.182	<0.001
	effective rainfall (x)	y = -0.21x + 1.52	0.353	<0.0001
	soil moisture deficit (x)	y = 0.05x + 0.69	0.270	<0.0001
	WFPS (x)	y = -0.03x + 3.72	0.279	<0.0001
Ammonium N	gravimetric soil moisture (x)	y = 0.04x - 6.30	0.717	< 0.0001
Soil inorganic N	gravimetric soil moisture (x) and soil temperature (z)	y = 0.04x + 0.16z -6.54	0.699	<0.0001

Conclusions

- BNF replaced an equivalent quantity of synthetic fertilizer so there was no difference in herbage production and potential for utilisation between the systems.
- The management of the systems resulted in a similar surplus and NUE, hence similar environmental pressure on an annual basis.
- The correlation between systems and N dynamics was difficult due to high buffering capacity of the soils.

-Grazing over the winter had no effect on soil N dynamics.

- The grassland management factors influenced size of soil organic pool
- Soil inorganic N was mainly affected by the hydrological factors and soil temperature.

Thank you for your attention!