

Effects of feeding intensity on milk production and animal health in different breed types

"Organic and low-input dairying – an option to Northern European Dairy Sector?" 27 -28 October 2015, Hotel Arthur, Helsinki, Finland

Auvo Sairanen¹, Marketta Rinne¹, Werner Zollitsch², Conrad Ferris³ Mogens Verstergaard⁴ and Torben Larsen⁴

> ¹Natural Resources Institute (Luke), Finland ²BOKU-University of Natural Resources and Life Sciences (BOKU), Austria ³Agri-Food and Biosciences Institute (AFBI), Northern Ireland ⁴Aarhus University, Denmark

Introduction

- ◆ The milk yield potential of the Holstein breed has increased dramatically during the last 3 decades
 - ◆ Due to selection programmes with a primary focus on milk volume
- However, the health, fertility and longevity of the Holstein breed has declined
 - Functional traits were not included in breeding programmes until recently
- In addition, many 'top' Holstein sires have been bred, and their progeny tested within high concentrate input systems
- The suitability of the 'modern' Holstein for organic and low input systems is often questioned (as well as the role of some other 'conventional' breeds)

Introduction

- What are the requirements of cows for organic and low input systems:
 - Excellent health and fertility traits
 - Ability to produce high yields of milk solids from predominantly forage based diets
- Many breeds are perceived to be adapted to organic and low input systems
 but for most, there is little evidence of how they performance within these systems
- ◆ Task 2.2 was designed to examine the performance of a number of breeds perceived to be adapted to these systems, with conventional breeds

To understand how contrasting genotypes adapt to a systematic restriction of nutrient and energy supply.

OVERVIEW

- Experiments undertaken in three 'diverse' regions
 - ◆ Conventional and 'adapted' genotypes examined in each region
 - ◆ Systems differing in concentrate inputs examined in each region

Country	Austria (E	OKU)	Northern Ire	eland (AFBI)	Finland (Luke)		
Region	Alpine		Western Europe	ean Grassland	North European Grassland/Confinement		
Genotype	Conventional	'Adapted'	Conventional	'Adapted'	Conventional	'Adapted'	
	Brown Swiss	Locally bred Holstein	Holstein	Three-way crossbred (SR x J x Hol)	Holstein	Nordic Red	
	(n = 13)	(n = 20)	(n = 36)	(n = 36)	(n = 32)	(n = 14)	
Systems examined	Low and Mode systen	•	Low and Moderate input systems		Moderate and High input systems		

Experiment & methods, Austria

- n = 50 lactations (21
 Conventional & 29 Adapted)
- Concentrate supplementation:
 - Control 618 kg DM/cow & lact.
 - Low 279 kg DM/cow & lact.
- Duration of grazing season: 210 d
- Turn out to pasture at 115 DIM in both experimental years

Experiment & methods, Finland

- n = 46 lactations (32 Conventional & 14 Adapted)
- Concentrate supplementation:
 Control 3020 kg DM/cow & lact.
 Low 1220 kg DM/cow & lact.
- Grass silage, barley grain, rapeseed meal
- Zero grazing
- Mainly TMR feeding
- Constant 305 d lactation

Experiment & methods, Northern Ireland

- ◆2 x 2 factorial design experiment
- 68 Spring calving dairy cows
 - > 34 Holstein-Friesian (HF)
 - > 34 '3-breed crossbreds)
 - Swedish Red x Jersey x Holstein-Friesian (SRx)
 - mean lactation number, 2.8
 - mean calving date, 15 February
- 2 production systems:
 - Low concentrate input (Low)
 - Moderate concentrate input (Control)

Experiment & methods, Northern Ireland

	Low input	Moderate input
Early lactation (calving until turnout)	Grass silage + concentrates (mixed in 70 : 30 DM ratio)	Grass silage + concentrates (mixed in a 40 : 60 DM ratio)
Mid lactation	Grazed grass plus 1.0 kg concentrate	Grazed grass plus 4.0 kg concentrate
Late lactation (re-housing until drying off)	Grass silage + concentrates (85 : 15 DM ratio)	Grass silage + concentrates (70 : 30 DM ratio)

Feed intake, interactions

Concentrate	Low		Control			S	ignifican	ice
Breed	Conv	Adapt	Conv	Adapt		Breed	Conc	ВхС
Concentrate kg DM /lactation								
Luke	1277	1216	2979	3040		NS	<0.001	NS
AFBI	719	680	1879	1887		NS	<0.001	NS
ВОКИ	281	278	642	539		NS	<0.001	NS
Total intake	, kg DM	l / d						
Luke (total)	18.3	18.9	21.1	21.0		NS	<0.001	NS
Luke (7 week)	16.8	17.2	18.4	17.5		NS	NS	NS
AFBI (Early lact)	14.8	13.6	20.0	18.3		NS	<0.001	NS
BOKU (7 week)	15.9	15.5	18.2	16.6		NS	<0.04	NS

Concentrate supplementation increased DMI regardless of the breed High substitution rate between concentrate and roughage

Concentrate intake

Total DM intake

ECM yield

Milk and ECM production, kg/lactation

Concentrate	Lo	ow	Con	Control Significance		Significanc		e
Breed	Conv	Adapt	Conv	Adapt		Breed	Conc	ВхС
Milk produc	ction							
Luke	8510	8052	9791	9028		0.15	<0.001	NS
AFBI	6636	5451	7984	7306		<0.001	<0.001	NS
Energy corr	ected m	ilk produ	ıction					
Luke	9180	8723	10553	10431		NS	<0.001	NS
AFBI	6642	5916	8098	7911		0.1	<0.001	NS
BOKU	5643	5570	6363	6021		NS	<0.001	NS

Concentrate supplementation increased procuction regardless of the breed The amount of concentrates was low in BOKU => no breed effect

Body tissue reserves

Concentrate	Low		Con	Control		Si	gnificand	ce	
Breed	Conv	Adapt	Conv	Adapt		Breed	Conc	ВхС	
Live weight	Live weight								
Luke	614	617	624	664		NS	0.1	NS	
AFBI	555	518	563	542		<0.001	<0.01	NS	
ВОКИ	593	537	585	533		<0.01	NS	NS	
Body condit	Body condition score								
Luke (mean)	2.8	3.2	2.9	3.2		<0.001	0.08	NS	
AFBI (mean)	2.12	2.41	2.2	2.42		<0.001	NS	NS	
BOKU (end lact)	2.7	2.6	2.7	2.6		NS	0.1	NS	

Cows in Finland were the most heavy, supplementation increased weight Adapted cows in Luke and AFBI have higher BCS

Fertility

Concentrate	Low		Control		Sig	nificance	e	
Breed	Conv	Adapt	Conv	Adapt		Breed	Conc	ВхС
1st service								
Luke	50	31	50	44		-	-	-
AFBI	43	60	31	13		NS	0.1	NS
BOKU	60	53	45	57		NS	NS	NS
Pregnancy	(%)							
Luke	67	75	88	94		-	-	-
AFBI	71	100	85	85		NS	NS	0.03
BOKU	100	87	82	86		NS	NS	NS
Services per conception (n)								
BOKU	1.4	1.6	1.6	1.4		NS	NS	NS

Luke had problems in pregnancy in Low ABI had problems in Low with Conventional breed

Health, Finland

	Lo	DW	Control		
	Convent	Adapted	Convent	Adapted	
% of cows treated for					
Mastitis	31	17	19	25	
Metab Disease	31	0	25	13	
Ovarian Disorders	6	0	13	38	
Lameness	44	0	31	25	
Other Infectious	13	0	19	0	

The number of Adapted cows is low => not superior health

Economy Finland

	Low	Control
	Conv Adapt	Conv Adapt
Value of milk produced, €/cow	3149 3060	3720 3611
Margin over feed costs, €/cow	2297 2241	2695 2577
Margin over feed costs, €/litre	0.27 0.28	0.28 0.29

The production in Finland is not as profitable as presented

Economy Northern Ireland

	Graz	ing	Concen	Concentrate		
	Hol	HxJ	Hol	ΗxJ		
Northern Ireland						
Value of milk produced, £/cow	1643	1644	2382	2089		
Margin over feed costs, £/cow	1041	1043	1184	941		
Margin over feed costs, £/litre	0.17	0.17	0.13	0.13		

This is an example based on the study of Holstein vs Jersey x Holstein

Conclusions, Finland

- The breeds responded similarly to a reduced supplementation level
- Low concentrate feeding was a biologically applicable strategy
 - Acceptable body tissue mobilization also with low supplemented level
 - Reproductive performance in Low?
- The high use of concentrate supplementation increased milk production and margin over feed costs

Conclusions, Austria

- The different **selection focuses** are only partially reflected in the response pattern of cows to a reduced supplementation level
- Similar milk yield, body tissue mobilisation and reproductive performance for both breeds
- Dietary treatment mainly influenced milk production while reproductive performance was relatively insensitive to concentrate supplementation
- Feed challenge did not exceed **metabolic adaptation**: response in milk yield, but not in reproduction

Conclusions, Northern Ireland

- Crossbred cows had lower intakes in early lactation
- Lower milk with crossbred cows but milk fat and protein content improved with crossbred cows – no effect on milk solids yield
- No interaction between genotype and production system for milk production
- Crossbred cows were lighter than Holstein cows
- Fertility not improved with crossbred cows, but less mastitis

