Feed efficiency and Genetics

Martin Lidauer

“Organic and low-input dairying – an option to Northern European Dairy Sector?”
27-28 October 2015, Hotel Arthur, Helsinki, Finland
Outline

• Overview
• Challenges in breeding for feed efficiency
• Different feed efficiency traits – where we are?

Acknowledgement

Luke
Seppo Ahvenjärvi, Terhi Mehtö, Enyew Negussie,
Marja-Liisa Sevón-Aimonen
University of Helsinki
Tuomo Kokkonen, Timo Sipiläinen
SLU Uppsala
Bingjie Li
Importance of feed efficiency in dairy cattle

- **Food security**
 - About 1 billion people of the world’s population have not enough food
 - World’s food demand increases 70% until 2050 (FAO, 2009)
 - ~2/3 of world’s agricultural land can be use through ruminants only
Importance of feed efficiency in dairy cattle

- **Environmental mitigation**
 - CH4 output / kg ECM (FAO, 2010)
 - Countries south of Sahara: 8 CO₂ eq.
 - Western European countries: 2 CO₂ eq.
 - Carbon sequestration
 - Grassland management (~25% of world’s milk is produced from grassland)
 - Arable land management
Importance of feed efficiency in dairy cattle

• Economically
 – Economic value of improved feed efficiency
 • Simulation study by T. Sipiläinen & P. Akkanen, University of Helsinki, (part of Finnish Feed Efficiency project)
 • Current Finnish market situation, silage 12.0kg DM, concentrate 11.5 kg DM, milk output 31.3 kg ECM; 250 000 cows
 – What if we improve feed efficiency by 5%
 • Same total output with less cows
 – Total surplus 23,2 million €
 – CH$_4$ emission reduced by 1.9 million kg
 • Same total output with less concentrate
 – Total surplus 27,7 million €
 – CH$_4$ emission reduced by 0.55 million kg
Improving of feed efficiency by animal breeding

Long history in other animal species

- Feed conversion rate (kg feed : kg meat)
- Broiler <2 : 1 (~250% progress during last 50 years)
- Pig <3 : 1 (~100% progress during last 50 years)
- Beef cattle <10 : 1 (~6% progress during last 20 years)

Dairy cattle

- So far only indirect genetic progress by breeding for correlated traits kg ECM : kg dry matter intake
- 1990 ~1.4 : 1
- 2010 ~1.5 : 1 (~7% progress during last 20 years)

but progress slows down

if milk production increases another 1000kg → progress only 1.3%
Challenges in breeding for feed efficiency

- Lifecycles of a cow
- Different products (milk, offspring, meat, ...)
- Lactation stages
- Use of tissue energy (energy status during lactation)
- How to define feed efficiency?
- What do we need to measure and for how long?
- Observations from a large number of cows are needed
- Observations have to be from a recent time period
- Measuring techniques
Challenges in breeding for feed efficiency

Apparently, the complexity of feed efficiency in dairy cattle cannot be described by one unique trait.

Several traits will be needed:
- Overall efficiency
 - Residual energy intake, …
- Efficiency to utilize feed stuff (soluble fiber)
 - Organic dry matter digestibility, dry matter digestibility, …
- Efficiency to produce milk
 - Energy conversion efficiency, …
- Ability to conceive and avoid metabolic disorders
 - Energy balance during early lactation, …
Dry Matter Intake (DMI)

Has central importance in genetic improvement of feed efficiency

- The most limiting factor in developing genetic evaluations for feed efficiency traits
- So far, comprehensive data from research and nucleus herds only
- Measuring DMI on farms
 - Direct measures (by weighing): still expensive
 - Indirect methods
 - DMI prediction based on different sources of information
 - Accuracy of prediction?
- DMI is not the same genetic trait along the course of lactation
 - This makes measuring even more challenging (a lot data needed)
Dry Matter Intake

Modelling of research farm data

• Genetic evaluation for feed intake (Berry et al., 2014)
 – Global Dry Matter Initiative
 – DMI data from 10 Holstein populations of 9 countries
 – ~7000 cows and 1700 heifers with DMI observations
 – Genomic prediction model for predicted DMI at lactation day 70
 – Lack of strong genetic links made analyses difficult

• Feed Utilization in Nordic Cattle (FUNC) project
 – DNK, FIN, NOR, SWE
 – DMI data from Holstein, Nordic Red and Jersey
 – ~2200 cows with ~120 000 weekly DMI observations
 – Analyses by multiple-trait models and random regression models
Dry Matter Intake

Heritability of DMI using FUNC data (Bingjie Li et al.; in prep.)
- Weekly DMI observations from DNK, FIN, SWE
- Holstein (HOL), Nordic Red Cattle (RDC), Jersey (JER)
Dry Matter Intake

Genetic correlation of DMI within 1st parity (Negussie et al.; in prep.)
- Daily DMI observations from Luke’s research farm (Jokioinen)
- 459 Nordic Red Cattle cows with 39277 DMI observations
Dry Matter Intake

Indirect methods to predict DMI

- Prediction model for feed intake (Gruber et al., 2004)
 - 10 research partners from Austria, Germany, Switzerland
 - Large and comprehensive data (over 31 000 records) on feed intake, diet composition, production information, body weight, etc.
 - R^2 of cross validation for best model: 0.87

- Prediction of DMI from cow activity tags (Difford et al., 2015)
 - Danish research farm data, 460 Holstein and 230 Jersey cows (DMI, activity tags)
 - Genetic correlation between DMI and cow activity: 0.28-0.67

- Prediction of DMI from MIR spectral data (McParland et al., 2014)
 - 378 Irish Holstein cows with DMI and MIR data
 - Correlation between predicted and true energy intake: 0.64
Dry Matter Intake

Indirect methods to predict DMI

- Predicting DMI by a marker method (Ahvenjärvi et al., in prep.) Luke and Valio Ltd (part of Finnish Feed Efficiency project)
 - Faecal DM output determined using an external marker
 - Feed digestibility determined using an internal marker (iNDF)
 - \(\text{DMI kg/d} = \frac{\text{Faecal DM output}}{1 - \text{DM digestibility}} \)
 - Analyses of external marker and iNDF by NIRS scans of faeces
 - Physiological studies with fistulated cows
 - Recovery of polyethylene glycol (PEG) \(\sim 100\% \)
 - Diurnal variation of PEG in faeces was large
Which traits are best suitable for genetic improvement of feed efficiency?

- Feed gross energy: 100%
- Digestible energy
- Faecal energy: 26%
- Metabolizable energy
- Urine energy: 4%
- CH₄ energy: 7%
- Heat increment: 37%
- Net energy
- Gestation growth: 2%
- Milk: 24%
Residual energy intake = Energy intake (MJ) - Predicted energy requirement (MJ)

Energy intake
- Digestible energy
- Faecal energy
- Urine energy
- CH₄ energy
- Metabolizable energy
- Heat increment
- Net energy
- Milk

Gestation
Growth
Residual energy intake (REI)

- Has been studied most by dairy cattle breeders
 - better statistical properties than ratio traits
- But has also shortcomings
 - corrects for energy requirement for maintenance
 - does not give information for which pathway the cow is efficient
- Heritability estimates
 - 0.01 … 0.38 (Veerkamp et al., 1995, …, Vallimont et al., 2011)
- REI is difficult to model based on daily or weekly measurements
 (Spurlock et al. 2012; Liinamo et al., 2015)
Energy utilization of metabolizable energy (ME) in Holstein Friesian

- Estimation of genetic parameters (Sevón-Aimonen et al., in prep.)
 Luke, Finland & Agri-Food and Biosciences Institute (AFBI), UK

- **SOLID project Task 2.4 Calculating the efficiency of energy utilization for maintenance and lactation in conventional and adapted breeds**

- Data:
 - derived from respiration calorimeter measurements at AFBI in UK

- Aim:
 estimate heritability for
 - utilization of metabolizable energy (ME) for lactation (k_l)
 - ME requirement for maintenance (ME_m)
 - live weight (LWT, used as comparison trait)
Energy utilization of metabolizable energy (ME) in Holstein Friesian

Material and method

• 469 records from 161 cows
• 1297 animals in pedigree
• Model
 \[y_{ijklm} = \text{Experiment}_i + \text{Forage proportion}_j + \text{Permanent cow effect}_k + \text{Additive animal effect}_m + e_{ijklm}, \]
 where, \(y_{ijklm} = \) observation (MEm, kl, LWT)
• Variance components estimated by AI-REML (DMU, Madsen et al.)

Results

<table>
<thead>
<tr>
<th>Variable</th>
<th>(c^2)</th>
<th>(c^2SE)</th>
<th>(h^2)</th>
<th>(h^2SE)</th>
<th>(V_p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEm</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.09</td>
<td>0.01</td>
</tr>
<tr>
<td>kl</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.10</td>
<td>0.00</td>
</tr>
<tr>
<td>LWT</td>
<td>0.26</td>
<td>0.23</td>
<td>0.50</td>
<td>0.23</td>
<td>3695.24</td>
</tr>
</tbody>
</table>
Energy utilization of metabolizable energy (ME) in Holstein Friesian

Conclusions

• Number of animals was a restricting factor in variance component estimation
• No genetic variation was found for ME\textsubscript{m} and kl based on this data

One other attempt:

• Currently, at Luke, we try do partition genetic variance of metabolizable energy intake (part of Finnish Feed Efficiency project)
• Analyses of weekly energy intake data of Nordic Red Cattle cows from Luke’s research farms
 – Different repeatability and random regression models
 – Results indicate that there is genetic variation in ME\textsubscript{m} and kl
Breeding for Organic Matter Digestibility?

Background
• Near infrared reflectance spectroscopy (NIRS) has the potential to serve as a tool for cow-specific digestibility predictions

Aims
• study the variability in diet digestibility between cows
• assess accuracy of NIRS predictions
• develop a practically protocol for sampling faeces

Data
• Data from a trial with 44 cows (trail was connected to SOLID project)
• Faecal samples collected at 50, 150 and 250 DIM
 – Individual samples: 10 samples/lactation stage
• Faecal samples analysed by NIRS and AIA
Breeding for Organic Matter Digestibility?

Traits

\[\text{DMD}_{\text{iNDF}} \]
- Diet dry matter digestibility based on iNDF concentration in feed and faecal spot samples

\[\text{OMD}_{\text{faeces}} \]
- Organic matter digestibility analysed by NIRS from faeces

\[\text{iNDF}_{\text{faeces}} \]
- iNDF concentration in faeces based on NIRS scans of faeces
 - Possible indicator trait for DMD?

Given cows of same contemporary groups consume same diet
Breeding for Organic Matter Digestibility?

Results (Mehtö et al., 2015)

Cow-specific variability
- was small (estimated SD for OMD$_{AIA}$ 12.3 g/kg and average 724 g/kg),

NIRS
- $(R^2_{\text{iNDF}_{\text{faeces}}}=0.85; R^2_{\text{OMD}}=0.69)$ larger reference data should improve accuracy

Repeatability estimates
- 0.22 (OMD$_{\text{faeces}}$) – 0.65 (OMD$_{AIA}$)
- indicated that we may find also genetic variation

$i\text{NDF}_{\text{faeces}}$ has potential to be used as indicator trait
- relatively high repeatability estimates

Developed sampling protocol
- composite samples from 2 - 3 daily samples from cows at least 1 month milking
- collection from all cows in the herd every 3 or 4 months

Continuation
- collection of samples continues for estimation of genetic variances
Energy status during early stage of lactation

Breeding for feed efficiency will require to have a reliable and inexpensive indicator of energy status

- Biomarkers like NEFA are too expensive
- Alternatives
 - BHB
 - Fatty acid profile of milk

Analyses of relationship between plasma NEFA concentrations and milk fatty acid contents (Finnish Feed Efficiency project)

- NEFA reference data (so far n>600)
 - Blood plasma samples and milk samples collected for two years
 - NEFA concentration and fatty acid profiles
Energy status during early stage of lactation

First preliminary results

• Predicting negative energy status by multiple linear regressions (Mäntysaari et al., 2015)
 – correlation between predicted and observed NEFA: 0.77
• correlation between plasma NEFA and milk fatty acids & fat/protein ratio

<table>
<thead>
<tr>
<th>Fat/prot</th>
<th>C16_1c</th>
<th>C18_0</th>
<th>C18_1cis9</th>
<th>MONO</th>
<th>LCFA</th>
<th>totC18_1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.24</td>
<td>0.49</td>
<td>0.42</td>
<td>0.58</td>
<td>0.55</td>
<td>0.53</td>
</tr>
<tr>
<td></td>
<td>0.57</td>
<td>0.57</td>
<td>0.57</td>
<td>0.57</td>
<td>0.57</td>
<td>0.57</td>
</tr>
</tbody>
</table>

Planned: Predicting negative energy status from MIR spectra
Some final considerations

• Large evidence that there is genetic variation in the ability of a cow to utilize feed efficiently
• We need reliable measurements or predictors for dry matter intake
• We need a good predictor for energy status
• A group of traits is needed to describe feed efficiency in dairy cows
• Genomic predictions will play an important role in genetic evaluations for feed efficiency
• Still a lot work needed to establish reliable genetic evaluations for feed efficiency
• However, my guess: we will see first pilot feed efficiency genetic evaluations soon
THANK YOU