

Outline

- Briefly about Life Cycle Assessment (LCA)
- How to include biodiversity in LCA?
- How to include soil carbon changes in LCA?
- A practical example: LCA of organic milk incl. biodiversity and soil carbon changes

Which environmental impacts of food?

Environmental life cycle assessment is focused on emissions

Measurable emissions (CO_{2} , SO_{2} etc.) causing global warming, acidification etc.

Potentially disappeared fraction (PDF) compared to forest

Measurable emissions (NO₃ etc.) causing eutrofication etc.

from EU BioBio project

Estimate biodiversity values (PDF) based on data

Biodiversity damage potential: Potentially disappeared fraction (PDF)

Decay of biomass carbon added to the soil - combined with Bern Carbon Cycle Model

Values for biodiversity and carbon sequestration - depends on the cattle feed

			Carbon sequestration (kg CO2/(ha year)		
	Cereals (straw incorp.), rape seed, maize co	ob ORG		30	0.35
THE WOOD OF THE PARTY OF		CONV		30	0.58
	Cereals (straw remov.), maize or barley				
	silage	ORG		50	0.35
		CONV		50	0.58
	Grass clover	ORG	85	50	-0.18
		CONV	85	50	-0.06
	Permanent grassland	ORG	20	00	-0.35
		CONV	20	00	-0.12

Use the methods on dairy farms in UK, DK and SF - and calculate the LCA results

Carbon footprint and biodiversity damage potential of milk from dairy farms in UK, DK and S

Conclusion

- Organic dairy farms has a positive impact on bidiversity and soil carbon changes compared to conventional
- Currently, this is not reflected in LCA's since biodiversity and soil carbon sequestration is generally not included.
- This study shows that biodiversity and soil carbon changes can be included in life cycle assements
- The results indicates that there is a significant difference between organic and conventional milk production in biodiversity and soil carbon sequestration
- The positive impact on biodiversity and carbon sequestration increases with increasing percentage grass in the feed ration.

